China factory Tohatsu Outboard Motor Engine Pinion, Gear 369-64020-2, 369-64010-2, 369-64030-2 worm and wheel gear

Product Description

We are looking CHINAMFG to work together with you and we hope to build extensive cooperative relationship with you, please do not hesitate to contact us.
 
 

Outboard model brand HONDA, SUZUKI, YAMAHA, MERCURY
Outboard part model 9.9HP,15HP,20HP,25HP,30HP,40HP,48HP,60HP,70HP,80HP,100HP

 
We are professional outboard engine parts supplier,we can supply variousparts:gears,shafts,gaskets,carburetors,propellor,bearing,and so on. 

61A-W0078-0A-00 Water Pump Repair Kit 1993-1996 150, 175, 200, 225, 250 HP
61A-W0078-00-00 Water Pump Repair Kit 1997-2000 150, 175, 200 HP
61A-W0078-W/H Water Pump Repair Kit 150, 175, 200 HP
61N-W0078-01-00 Water Pump Repair Kit 1997 30 HP
63D-W0078-01-00 Water Pump Repair Kit 40, 50, 60 HP
63V-W0078-01-00 Water Pump Repair Kit 9.9, 15 HP
65G-W0078-00-00 Water Pump Repair Kit 9.9, 15 HP
663-W0078-01-00 Water Pump Repair Kit 1992-1995 55 HP
66T-W0078-00-00 Water Pump Repair Kit 25, 30, 40 HP
670-W0078-00-00 Water Pump Repair Kit 1995-1999 48 HP
676-W0078-00 Water Pump Repair Kit 40 HP
679-W0078-A1-00 Water Pump Repair Kit 40 HP
682-W0078-00 Water Pump Repair Kit 9.9, 15 HP
688-W0078-00 Water Pump Repair Kit 75, 85, 90 HP
692-W0078-00-00 Water Pump Repair Kit 60-90 HP
696-W0078-00 Water Pump Repair Kit 48 HP
6B4-W0078-0A Water Pump Repair Kit 9.9 HP
6E5-W0078-00-00 Water Pump Repair Kit 115 HP
6F5-W0078-00 Water Pump Repair Kit 40 HP
6F6-W0078-A0 Water Pump Repair Kit 40 HP
6G0-W0078-00 Water Pump Repair Kit 25 HP
6G5-W0078-00-00 Water Pump Repair Kit 1987-1988 150, 175, 200 HP
6H3-W0078-00-00 Water Pump Repair Kit 1984-1991 60, 70 HP
6H4-W0078-A0-00 Water Pump Repair Kit 40, 50 HP
6N6-W0078-02-00 Water Pump Repair Kit 115, 130 HP

YAMAHA, SUZUKI, TOHATSU/NISSAN, HONDA, etc outboard brands. 

Our marine outboard parts contains crankshaft, crank pin, cylinder liner, diaphragm, fuel filter, mount damper, shaft, spacer, spark plugs, starter, gear, pinion, gasket, gasket kit, impeller, key woodruff, propeller, piston, primary pump, clutch dog ,carburetor repair kit, bracket, upper casing, lower casing, repair kit, washer, bolt ,pin, spring, float, tube, clamp, bearing, seal, o-ring, cartridge, tab-trim , bushing, cable, connector, coil ignition, CDI unit, water pump, collar, condenser, etc. 
 

Application: Motor
Hardness: Hardened Tooth Surface
Gear Position: Internal Gear
Manufacturing Method: Cast Gear
Toothed Portion Shape: Spur Gear
Material: Cast Steel
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

spur gear

How do you ensure proper alignment when connecting spur gears?

Proper alignment is crucial when connecting spur gears to ensure smooth and efficient gear operation. Here’s a detailed explanation of how to ensure proper alignment when connecting spur gears:

  • Visual Inspection: Start by visually inspecting the gears, gear shafts, and associated components for any visible misalignment or damage. Look for signs of wear, uneven tooth engagement, or any abnormalities that may affect alignment.
  • Shaft Alignment: Align the gear shafts accurately before connecting the gears. Proper shaft alignment ensures that the gears are positioned correctly relative to each other. This can be achieved through various alignment techniques, such as using alignment tools, laser alignment systems, or measuring devices. The goal is to ensure parallel or coaxial alignment between the gear shafts.
  • Backlash Adjustment: Adjust the backlash between the gear teeth to achieve proper alignment. Backlash refers to the slight gap between the mating teeth of gears. It is important to maintain an appropriate amount of backlash to allow for smooth gear engagement and minimize the risk of binding or jamming. Follow the manufacturer’s recommendations or industry standards for the recommended backlash range and adjust as necessary during gear installation.
  • Check Gear Mesh: Verify the gear meshing pattern to ensure proper alignment. The gear teeth should mesh smoothly and evenly without any signs of excessive or uneven contact. If there are indications of improper meshing, such as concentrated contact on a specific area of the tooth, it may imply misalignment or other issues that need to be addressed.
  • Shim Adjustment: If misalignment is detected, shimming can be employed to correct it. Shimming involves placing thin metal shims between the gear and the shaft to adjust the positioning and alignment. Shims are available in various thicknesses, allowing for precise alignment adjustments. Careful measurement and selection of the appropriate shim thickness can help achieve the desired alignment.
  • Tightening Bolts: When connecting the gears to the shafts, ensure that the bolts or fasteners are tightened evenly and to the recommended torque specifications. Uneven tightening can introduce misalignment or uneven load distribution, leading to gear misalignment and potential issues.
  • Post-Installation Verification: After connecting the gears, perform a final verification of the alignment. Rotate the gears manually or through the gear system’s intended operation and observe the gear meshing behavior. Look for any signs of abnormal noise, vibration, or irregular tooth engagement. If any issues are detected, further adjustments or inspections may be necessary.
  • Regular Maintenance: Implement a proactive maintenance program that includes periodic inspections and alignment verification. Gears can experience wear or misalignment over time due to factors such as load variations, temperature changes, or prolonged operation. Regular maintenance allows for early detection and correction of alignment issues, ensuring optimal gear performance and longevity.

Proper alignment is essential for maximizing the efficiency, durability, and reliability of spur gear systems. By following these alignment practices and considering the manufacturer’s recommendations, industry standards, and expert advice, you can ensure proper alignment when connecting spur gears.

It’s important to note that the specific alignment techniques and procedures may vary depending on the gear system’s design, size, application, and other factors. Consulting with gear manufacturers, engineers, or alignment specialists can provide further guidance on the recommended alignment practices for your specific gear system.

spur gear

Are spur gears suitable for high-torque applications?

Spur gears are commonly used in a wide range of applications, including those involving high-torque requirements. However, their suitability for high-torque applications depends on various factors. Here’s a detailed explanation:

Spur gears are designed to transmit power and torque between parallel shafts. They have straight teeth that engage fully, providing efficient power transfer. The suitability of spur gears for high-torque applications can be evaluated based on the following considerations:

  • Load Distribution: Spur gears distribute the transmitted load over a larger contact area compared to other gear types. This characteristic allows them to handle higher torque loads effectively.
  • Size and Diameter: The size and diameter of the spur gears play a crucial role in their ability to handle high torque. Larger gear diameters provide increased torque capacity due to the longer lever arm and larger contact area between the gear teeth.
  • Material Selection: Choosing the appropriate material for the spur gears is essential for high-torque applications. Strong and durable materials, such as hardened steel or alloy steels, are commonly used to ensure the gears can withstand the high stresses and torque loads without deformation or failure.
  • Gear Design: Proper gear design considerations, such as tooth profile, module or pitch, and the number of teeth, can impact the torque-carrying capacity of spur gears. Design parameters should be optimized to ensure sufficient tooth strength and minimize the risk of tooth breakage or excessive wear.
  • Lubrication and Maintenance: Adequate lubrication is critical for reducing friction, wear, and heat generation in high-torque spur gear applications. Regular maintenance, including lubricant replacement and gear inspections, can help identify and address any issues that may affect the gear’s torque-handling capabilities.
  • Supporting Components: The overall system design, including the selection of bearings, shafts, and housing, should be considered to ensure proper support and alignment of the spur gears. Well-designed supporting components contribute to the overall torque capacity of the system.

While spur gears can handle high torque, it’s important to note that there are limitations to their torque capacity. Factors such as gear size, material strength, tooth design, and operating conditions can affect the maximum torque the gears can safely transmit without failure.

In some cases, other gear types such as helical gears or bevel gears may be more suitable for specific high-torque applications. These gears offer advantages such as increased load-carrying capacity, improved torque transfer efficiency, and reduced noise and vibration levels.

Ultimately, the suitability of spur gears for high-torque applications should be evaluated based on the specific requirements, operating conditions, and industry standards applicable to the particular application.

spur gear

How do spur gears differ from other types of gears?

Spur gears, as a specific type of gear, possess distinct characteristics and features that set them apart from other types of gears. Here’s a detailed explanation of how spur gears differ from other types of gears:

  • Tooth Geometry: One of the primary differences lies in the tooth geometry. Spur gears have straight teeth that are cut parallel to the gear axis. This differs from other gear types, such as helical gears or bevel gears, which have angled or curved teeth.
  • Gear Meshing: Spur gears mesh by direct contact between their teeth, creating a line or point contact. This meshing arrangement is different from other gear types, such as worm gears or planetary gears, where the teeth mesh in a different manner, such as through sliding contact or multiple points of contact.
  • Direction of Force: Spur gears transmit rotational motion and torque in a specific direction. The force is transmitted along the axis of the gears, making them suitable for parallel shaft arrangements. In contrast, other types of gears, such as bevel gears or hypoid gears, can transmit motion between non-parallel or intersecting shafts.
  • Noise and Vibration: Spur gears tend to produce more noise and vibration compared to certain other gear types. The direct contact between the teeth and the sudden engagement/disengagement of the teeth can generate impact forces, leading to noise and vibration. In contrast, gear types like helical gears or double-enveloping worm gears provide smoother meshing and reduced noise levels.
  • Efficiency and Load Distribution: Spur gears generally offer high efficiency in power transmission due to their direct tooth engagement. However, they may experience higher stress concentrations and load concentrations compared to other gear types. Gear designs like helical gears or planetary gears can distribute the load more evenly across the teeth, reducing stress concentrations.
  • Applications: Spur gears find widespread applications in various industries and equipment. Their simplicity, ease of manufacture, and cost-effectiveness make them suitable for a wide range of systems. Other gear types have specific applications where their unique characteristics, such as high torque transmission, precise motion control, or compact size, are advantageous.

In summary, spur gears differ from other types of gears in terms of tooth geometry, gear meshing, direction of force transmission, noise and vibration characteristics, load distribution, and specific applications. Understanding these differences is crucial when selecting the appropriate gear type for a particular mechanical system, considering factors such as load requirements, motion control, efficiency, and design constraints.

China factory Tohatsu Outboard Motor Engine Pinion, Gear 369-64020-2, 369-64010-2, 369-64030-2 worm and wheel gearChina factory Tohatsu Outboard Motor Engine Pinion, Gear 369-64020-2, 369-64010-2, 369-64030-2 worm and wheel gear
editor by CX 2023-11-29

Tags:

Spur Gear

As one of the leading spur gear manufacturers, suppliers, and exporters of mechanical products, We offer spur gear and many other products.

Please get in touch with us for details.

Manufacturer supplier exporter of spur gear.

Recent Posts